Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Phúc
Xem chi tiết
Pham Quoc Cuong
5 tháng 4 2018 lúc 22:52

\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{2-a^2-b^2}=1+\frac{2ab}{2c^2+a^2+b^2}\)

\(=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le1+\frac{ab}{\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}=1+\sqrt{\frac{a^2b^2}{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Bình luận (0)
Pham Quoc Cuong
5 tháng 4 2018 lúc 22:47

Áp dụng BĐT  Cô si, ta có: 

\(\begin{aligned} \frac{1}{1-ab}&=1+\frac{ab}{1-ab} \le 1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{a^2+b^2+2c^2} \\ &=1+\frac{2ab}{(a^2+c^2)+(b^2+c^2)}\le 1+\frac{ab}{\sqrt{(a^2+c^2)(b^2+c^2)}}\\& \le 1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right). \text{ }(1)\end{aligned}\)

Tương tự \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{a^2+c^2}\right)\left(2\right)\)

               \(\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+b^2}\right)\left(3\right)\)

\(\Rightarrow VT\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

           

Bình luận (0)
Phạm Vũ Thanh Nhàn
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:10

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:11

à xl gửi lộn

Bình luận (0)
 Khách vãng lai đã xóa
lili
15 tháng 11 2019 lúc 22:38

Oh yeah mik lm đc r.

\(\frac{1}{\sqrt{ab+a+2}}< =\frac{1}{ab+a+2}+\frac{1}{4}\\ \)

\(=>VT< =sigma\frac{1}{ab+a+2}+\frac{3}{4}\)

\(Có\frac{1}{ab+a+2}< =\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

\(CMTT\frac{1}{bc+c+2}< =\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

\(\frac{1}{ca+c+2}< =\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Cộng lại => Vế trái <= 1/4.3/4+3/4=3/2

=> đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Phúc Long Nguyễn
Xem chi tiết
Thắng Nguyễn
9 tháng 4 2017 lúc 23:08

Ta có: 

\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó Cauchy.... 

Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii

Bình luận (0)
Nguyễn Linh Chi
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 10:55

Cách 1:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Tương tự cộng vế theo vế có đpcm

Cách 2:

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)

Tương tự:

\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)

Cộng lại:

\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)

Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)

Khi đó ta có được đpcm

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 11:17

Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))

Nháp:

Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì  cả nên nghĩ đến hướng đi khác

Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau

Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)

Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)

Ta có được 

\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)

\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)

\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)

\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
TRAN XUAN TUNG
12 tháng 6 2020 lúc 18:23

 \(S=\frac{1}{\frac{1}{c}+a+2}+\frac{1}{\frac{1}{a}+b+2}+\frac{1}{\frac{1}{b}+c+2}\)

Áp dụng svacxo suy ra \(4S\le\frac{1}{\frac{1}{c}+1}+\frac{1}{a+1}+...=3\)Dấu bằng xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Prissy
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:30

Ta dễ có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Một cách tương tự \(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

Khi đó: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}\)

Cần chứng minh: \(3-\frac{a+b+c}{2}\ge\frac{3}{2}\Leftrightarrow a+b+c\le3\)

Hình như có gì đó sai sai @@

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:41

Lời giải kia sai rồi :V Làm cách khác:

Ta có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)

Tương tự rồi ta được:

\(LHS=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Bất đẳng thức cần chứng minh tương đương với: 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{3a^2+3}+\frac{b^2}{3b^2+3}+\frac{c^2}{3c^2+3}\le\frac{1}{2}\)

Ta dễ có được:

\(\frac{4a^2}{3a^2+3}=\frac{4a^2}{3a^2+ab+bc+ca}=\frac{\left(a+a\right)^2}{a\left(a+b+c\right)+2a^2+bc}\le\frac{a^2}{a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\)

Tương tự:

\(\frac{4b^2}{3b^2+3}\le\frac{b^2}{b\left(a+b+c\right)}+\frac{b^2}{2b^2+ca};\frac{4c^2}{3c^2+3}\le\frac{c^2}{c\left(a+b+c\right)}+\frac{c^2}{2c^2+ab}\)

\(\Rightarrow LHS\le\frac{1}{4}\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}+\Sigma\frac{a^2}{2a^2+bc}\right)=\frac{1}{4}\left(1+\Sigma\frac{a^2}{2a^2+bc}\right)\)

Một cách khác ta dễ có được: \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Done !

Bình luận (0)
 Khách vãng lai đã xóa
hung
Xem chi tiết
Cao Mai Hoàng
17 tháng 1 2020 lúc 5:18

bạn có đang on không chat vs mình đi

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
24 tháng 3 2020 lúc 6:00

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
abc081102
Xem chi tiết
Châu Trần
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:43

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Bình luận (0)